Login   |  Users Online: 608 Home Print this page Email this page Small font sizeDefault font sizeIncrease font size
Search Article 
  
Advanced search 
   Home | About us | Editorial board | Search | Ahead of print | Current issue | Archives | Submit article | Instructions | Subscribe | Contacts
PHARMACOLOGICAL STUDY
Year : 2015  |  Volume : 36  |  Issue : 2  |  Page : 196-202

Pharmacodynamic and pharmacokinetic interaction of Panchagavya Ghrita with phenytoin and carbamazepine in maximal electroshock induced seizures in rats


1 Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
2 Department of AYUSH, Ministry of Health and Family Welfare, Government of India, New Delhi, India
3 Department of Neurology, All India Institute of Medical Sciences, New Delhi, India

Correspondence Address:
Prof. Yogendra Kumar Gupta
Department of Pharmacology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi - 110 029
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0974-8520.175538

Rights and Permissions

Introduction: Traditionally, Panchagavya Ghrita (PG) has been used for the management of epilepsy, anxiety, fever and jaundice. It consists of five components of cow products namely, cow milk, clarified butter from cow milk, cow urine, curd from cow milk, and cow dung juice. Aim: To evaluate the effect of PG in maximal electroshock (MES) induced seizures model and its pharmacodynamic and pharmacokinetic interaction with phenytoin (PHT) and carbamazepine (CBZ) in rats. Materials and Methods: Male Wistar rats were administered PG 500, 1000, 2000, and 4000 mg/kg orally for 7 days and seizures were induced by MES. For interaction studies, PG (4000 mg/kg) was administered along with a sub-therapeutic dose of PHT (20 mg/kg, p.o.) and CBZ (10 mg/kg, p.o.). Behavioral parameters were assessed. Oxidative stress markers and serum levels of PHT and CBZ were estimated. Results: Tonic hind limb extension, cognitive impairment, and oxidative stress produced by MES were reversed by PG (4000 mg/kg). Co-administration of PG (4000 mg/kg) with a sub-therapeutic dose of PHT and CBZ potentiated antiepileptic effect and ameliorated cognitive impairment as well as oxidative stress. Although, there was a slight increase in serum levels of PHT and CBZ on co-administration with PG, it was statistically insignificant. Conclusion: Co-administration of PG with low doses of PHT and CBZ caused complete seizure protection. This suggests the potential of PG as an adjunct in epilepsy with improved efficacy and tolerability.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed3718    
    Printed25    
    Emailed0    
    PDF Downloaded325    
    Comments [Add]    
    Cited by others 2    

Recommend this journal